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This paper reports the results of experimental tests of the Nash equilibrium predictions 
in a one-armed bandit game with information spillover. Players learn the probability 
that a risky prospect pays by either taking draws from the distribution themselves or ob-
serving the outcome of another player’s choice. Our experiment is designed to learn 
whether players experiment strategically, anticipating the opportunity to free-ride on 
others’ information and doing so. While error rates exhibit a bias toward under-
experimentation, we observe a significant strategic effect. Structural parameter estimates 
suggest the lack of experimentation observed is due to decision error and somewhat pes-
simistic priors, rather than risk preferences or probability weighting. 
1. INTRODUCTION

Most decisions of chance involve a considerable de-
gree of uncertainty or ambiguity (Knight, 1921;
Ellsberg, 1961). Consider the following: a prospective
business owner deciding whether a neighborhood is a
good location for a new establishment; a taxpayer de-
ciding whether to engage in evasion; and a consumer
deciding whether to purchase a new product. In each
case, the likelihood of success is unknown to the indi-
vidual. Often, the only means of resolving this uncer-
tainty is through costly experimentation (Gittins,
1979). It is not always the case, however, that one
need be the proverbial guinea pig. In the presence of
spillovers, it is possible that agents can free-ride on
others’ information, creating an incentive to strategi-
cally delay experimentation themselves (Guzman and
Ventura, 1998; Bolten and Harris, 1999).1 The busi-
ness owner can observe the experience of similar busi-
nesses in the vicinity. The taxpayer can observe the
fate of friends, coworkers, and family members. The
consumer can observe the experience of others who
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decided to purchase the new product. The behavioral
question is whether individuals actually engage in this
sort of strategic experimentation, by free-riding on
others’ information when the opportunity is antici-
pated. This is an open empirical question and has im-
portant implications regarding the public reporting of
information, such as entrepreneur success rates or con-
sumer reports, that can mitigate such strategic delay.

To address this question, this paper reports the re-
sults of a laboratory experiment designed to examine
whether individuals behave in a manner consistent
with the Bayesian-Nash prediction in a one-armed
bandit problem with information spillover. We con-
sider a two-player representation, where each player
may simultaneously choose either a safe or risky op-
tion in each of two stages. The risky option has two
states of nature, success or failure, with unknown
chances common to both players. If the risky option
is selected by either player, the outcome is observed
by both players. Thus, prior to making their second
choice, each player will have an information set
consisting of the result from zero, one, or two draws
from the distribution of uncertain outcomes associated
with the risky choice. As Bolten and Harris (1999)



show, the information spillover changes the incentive
to engage in costly experimentation via the free-ride
effect. That is, a marginal player should strategically
delay experimentation if they anticipate the other
player will provide them with information.

The experiment induces player heterogeneity in the
opportunity cost of experimentation. Players are
assigned one of three safe options: low, middle, or
high. Players who face a low (high) safe option have
a dominant strategy to choose the risky (safe) option
in the first stage. These dominant strategy players are
always paired with a middle safe option player, who
has a conditional best-response to experiment strategi-
cally. That is, these players should only experiment
with the risky option in the first stage, and provides
public information, when paired with a high safe op-
tion player.2 When paired with a low safe option
player, however, they should free-ride on the other
player’s provision of information. Hence, the same
amount of information should be generated in either
game; only one player should ever experiment with
the bandit first stage.

The first-stage behavior of subjects in the experi-
ment indicates a strategic response to the information
spillover; there is a significant reduction in experi-
mentation when the opportunity to free-ride is
anticipated. Still, consistent with public goods exper-
iments (Andreoni, 1995), we observe too little exper-
imentation when players should and too much
experimentation when players should not. While this
is to be expected in a binary choice setting with
player decision error (Andreoni, 1995), these error
rates are asymmetric, exhibiting a bias towards
under-experimentation.3 This is consistent with pre-
vious evidence of ambiguity aversion (Ellsberg,
1961; Hogarth and Einhorn, 1990; Camerer and
Weber, 1992; Viscusi and Magat, 1992; Fox and
Tversky, 1995; Wakker et al., 1997; Anderson,
2012). Nonetheless, when only one player experi-
ments (which occurs roughly two-thirds of the time
in the data), it is the player predicted to do so at
least 96% of the time. Thus, although players exper-
iment with the bandit less than predicted, we still
find evidence that players behave strategically, by
free-riding when possible in the presence of an infor-
mation spillover.

To our knowledge, this research is the first to pro-
vide evidence that individuals experiment strategi-
cally. Hendricks and Kovenock (1989) and Caplin
and Leahy (1998) provide evidence that firms exhibit
such behavior in the exploration for petroleum and
new retail markets, respectively. Dixit and Pindyck
(1999) suggest the same may be true for research
and development. While the present findings indicate
such strategic free-riding on information is not re-
stricted firm behavior, individual’s experiment signifi-
cantly less than classic decision theory predicts. On
the one hand, this may be beneficial when the risky ac-
tivity is detrimental to social welfare, such as with tax
evasion. On the other hand, it suggests insufficient in-
formation will be generated for welfare enhancing
risky activities, such as entrepreneurship and/or new
product adoption. Policies that promote public
reporting of information, such as entrepreneur success
rates and/or consumer reports, could alleviate informa-
tion shortages.

Analysis of second-stage decisions suggests indi-
viduals would be responsive to such policies. Overall,
subjects choose the Bayesian expected income maxi-
mizing choice 82.9% of the time. Still, the results in-
dicate two sources of potential bias to Bayesian
updating: (i) the strength of the information signal
and (ii) previous behavior. Similar to recently re-
ported behavior (Holt and Smith, 2009; Poinas
et al., 2012), we find the probability of a player
choosing the risky option is positively correlated to
the proportion of successes observed, despite control-
ling for Bayesian updating. This is consistent, how-
ever, with behavioral models that allow for decision
error (Fechner, 1860/1966; Luce, 1959; Smith and
Walker, 1993). Still, the probability of choosing the
risky option in the second stage is also positively cor-
related with doing so in the first stage, which is also
consistent with previously reported behavior
(Charness and Levin, 2005; Hey and Panaccione,
2011).4 Nonetheless, controlling for these two factors,
we find significant evidence of Bayesian updating. In
each treatment, the largest increase in the proportion
of players that choose the risky option in the second
stage occurs after observing the critical proportion of
successes in the first stage. Hence, it is unlikely the
lack of experimentation is due to a failure to process
information.

Finally, we explore the extent to which risk prefer-
ences, probability weighting (a popular method of
modeling ambiguity aversion), and/or pessimistic
priors (another approach to modeling ambiguity aver-
sion) can explain why players experimented less than
predicted. As such, the analysis adds to the growing
literature regarding estimation of prior beliefs
(McKelvey and Page, 1990; Nyarko and Schotter,
2002; Holt and Smith, 2009; Karni, 2009; Offerman
et al., 2009; Andersen et al., 2010; Hao and Houser,
2012). This literature has primarily focused on



incentive-compatible mechanisms to elicit prior be-
liefs, such as scoring rules, which require risk neutral
preferences for truthful revelation (Offerman et al.,
2009).5 The present analysis adopts an alternative
strategy similar to that of Offerman et al. (2009).
The experimental design employs a standard multiple
price list (MPL) to elicit risk attitudes (Holt and
Laury, 2002), which are subsequently used to cali-
brate estimates of prior beliefs.6 The estimation strat-
egy combines first-stage and second-stage decisions
from the bandit game (with and without information)
with choices from the risk preference elicitation MPL
(with known and unknown probabilities) to obtain
structural parameter estimates of risk preference,
probability weighting, prior beliefs, and stochastic de-
cision error.

Overall, neither risk preference nor probability
weighting appear to be the reason for the lack of ex-
perimentation observed in first-stage choices of the
bandit game. When significantly different from neu-
trality, the estimated constant relative risk aversion
(CRRA) parameter implies risk-seeking preferences.
While there is evidence of weighting known probabil-
ities, consistent with previous research (Tversky and
Kahneman, 1992; Wu and Gonzalez, 1996; Prelec,
1998; Stott, 2006), we find no evidence of significant
weighting of unknown probabilities, which is also con-
sistent with previous findings (Budescu et al., 2011).
Rather, the lack of experimentation in the first stage
of the bandit game appears to be mainly the result of
slightly pessimistic priors and decision error, as these
parameter estimates are significantly different from
the values assumed in the theoretical framework. This
is consistent with ambiguity aversion in prospective
reference theory (Viscusi, 1989).

The remainder of the paper is organized as follows.
In the next section, we present a model of a one-
armed bandit problem with information spillovers
and derive a solution to the game used in the experi-
ment. In Section 3, we present the experimental de-
sign and formal hypotheses of expected behavior. In
Section 4, we present the results of the data analysis.
Finally, we summarize and discuss our findings in
Section 5.
2. INFORMATION SPILLOVER IN A BANDIT
PROBLEM

Suppose two players, i and j, play a game against na-
ture in two stages, t=1, 2. The payoffs to each player
are the sum of first-stage and second-stage returns. In
each stage, the players simultaneously choose whether
or not to take a safe option, paying Si> 0, or to take a
risky option, a sample of n Bernoulli trials that result
in outcomes, x1,…, xn, where each xi∈ {0, 1} pays R
for a success, such that nR> Si and zero for a failure.

The likelihood a player observes X ¼
Xn

i¼1
xi suc-

cesses in n trials is given by fn(x1,…,
xn|θ)∝ θX(1� θ)n� X, where the probability of a suc-
cess for each draw from the risky option is θ, such that
0< θ< 1, which is unknown to the players. Hence,
players must make their decisions in each stage based
upon their subjective beliefs (Savage, 1954) and any
available information.7

Let ξ(θ) denote the distribution of each player’s
prior beliefs about θ. Assume that ξ(θ) is a beta distri-
bution with parameters α and β, so that
ξ(θ)∝ θα� 1(1� θ)β� 1 (DeGroot, 1970, p. 40).8 Since
players are completely uninformed about the value of
θ, it is natural to assume α= β =1 for each player,
which implies that ξ(θ) is a uniform distribution over
the interval zero to one.9

As each player may draw n samples, N∈ {0,n, 2n}
denotes the number of draws observed in the first stage
of the game. Hence, the possible information sets in
the second stage are denoted I0 = {∅}, I1(X) = {n,X},
I2(X) = {2n,X}, where the subscript on each informa-
tion set represents the number of players who have
chosen the risky option in the first stage. The posterior
distribution of beliefs is thus given by ξ(θ|x1,…,
xN)∝ θα + X� 1(1� θ)β + N� X� 1, which is also beta dis-
tribution with parameters α+X and β +N�X
(DeGroot, 1970). Let pt=E[θ|I] denote each players’
common expectation of θ in stage t, given the informa-
tion, I, available at that point. Thus p1 ¼ α

αþβ and
p2 Ið Þ ¼ αþX

αþβþN .
10 Hence, the expectation of the unin-

formed prior and posterior distributions are p1 ¼ 1
2

and p2 ¼ 1þX
2þN, respectively.

Player i chooses the risky option in the first stage if
and only if

Rnp1 � Si þ EVMSi Nð Þ > 0; (1)

where EVMSi(N) is the expected value of a message
service that provides N draws from the risky option
to a player with safe return Si. The difference in the
first two terms in (1) is the expected opportunity cost
of obtaining information in the first stage. This
equals the expected return from choosing the risky
option less the forgone return to choosing the safe
option. Thus, the decision rule is to choose the risky
option if the expected value of the message service
is greater than the expected cost of obtaining the



information. However, the expected value of the
message service depends on how much information
will be provided.

Suppose player j has chosen the safe option in the
first stage. Then, the expected value of the message
service can be written as

EVMSi nð Þ ¼
Xn
X¼0

f n X jI0ð Þfmax Si;Rnp2 I1 Xð Þð Þ½ �
�max Si;Rnp2 I0ð Þ½ �g≥0

(2)

It is well known that for any given return to the safe
option relative to the risky option, the expected value
of the message service is nonnegative (Hirshleifer
and Riley, 1992, p. 180). Information has value be-
cause it may change the perceived optimal decision
in the second stage. Thus, the expected value of the
message service is the difference between the
weighted average of expected returns from the optimal
decision, max[Si,Rnp2(I1(X))], given the information
signal I1(X), weighted by the expected probability of
the particular information signal fn(X|I0), and the ex-
pected return from the optimal decision in the absence
of information, max[Si,Rnp2(I0)]. This difference is
greater than zero whenever the player potentially
chooses an action with information that differs from
what they would have chosen absent information and
zero otherwise.11

In contrast, if player j has chosen the risky choice in
the first stage, player i’s decision is no longer a com-
parison between zero information and a positive
amount of information. Rather, player i’s choice is
now between two message services, one in which n
draws are provided (by the other player) and one in
which 2n draws are provided (by both players). When
player j has chosen the risky option in the first stage,
the expected value of the message service,

EVMSi 2nð Þ ¼
X2n
X¼0

f 2n X jI0ð Þmax Si;Rnp2 I2 Xð Þð Þ½ �

�
Xn
X¼0

f n X jI0ð Þmax Si;Rnp2 I1 Xð Þð Þ½ �;
(3)

is the net expected value of the message service that
provides 2n draws, relative to the message service
that provides n draws, to a player whose safe return
is Si. The first and second summations in EVMSi(2n)
are the weighted averages of the updated expected
returns from the second-stage optimal decisions,
given that either both players or only the other
player chooses the risky option, respectively. The
expected opportunity cost of obtaining the message
service is measured in the safe return foregone to
player i. This cost is independent of whether the
other player does or does not make the risky choice.
The expected value of information, however, does
depend upon the choice of the other player. To see
this, we turn our attention to the parameters used
in the experiment.

2.1. Solution to the Game Used in the Experiment

In the experiment, the payoff to a successful draw isR=
$5 and choosing the risky option gives the player n=3
draws. There are three types of players in the experi-
ment, indexed by their safe returns: SL=$4, SM=$8,
and SH=$12. The model predicts that the SM player
will systematically vary their behavior depending upon
which type of player they are paired with, SL or SH.
Thus, an SM player is always paired with an either SL
or SH player.12 This experimental design yields four
treatments consisting of the combinations of a player’s
own type and that of the other player {Si,Sj}∈ {{$4,
$ 8}, {$8, $ 4}, {$8, $ 12}, {$12, $ 8}}.13 Figure 1 dis-
plays the normal form of the first-stage games used in
the experiment. The values in Figure 1 represent the
sum of first-stage and second-stage expected payoffs
from playing a particular strategy, given optimal
second-stage behavior and an uninformed prior.14 The
SM player’s payoffs are the first number in each cell.
Best-responses are in bold, italicized font. There is a
unique pure-strategy Nash equilibrium in each of the
games in Figure 1: the lower cost player experiments
and the other free-rides.15
3. EXPERIMENTAL DESIGN AND
HYPOTHESES

The experimental design pares down the number of
confounding factors to a minimum. While one-armed
bandit problems are typically studied in an infinite ho-
rizon, the two-stage game allows us to eliminate two
types of confounding effects. By restricting our atten-
tion to a two-stage setting, we eliminate incentive to
provide information in the current stage to encourage
information provision by others in the future (Bolten
and Harris, 1999). This allows us to cleanly test for
the free-riding effect. In addition, the cognitive costs
of deriving optimal stopping rules in infinite horizon
bandit games may cause players to form heuristics to
simplify the repeated sampling problem (Gans et al.,
2007). The two-stage game lessens the cognitive costs
of finding the best-response.



Figure 1. Normal forms of the first-stage games used in the experiment, n= 3 and R= 5.
Furthermore, while there is considerable evidence
that players are not ‘perfect Bayesians’—players tend
to place too little weight on prior beliefs and too much
weight on new information—our experiment is de-
signed to afford players the best shot at being ‘good
Bayesians’.16 For example, it is known that when
there are a small number of possible data generating
processes, players form their posterior beliefs on heu-
ristics such as whether the sample is ‘representative’
of one of the possibilities. Hence, we allow for a large
number of possible data generating processes to mini-
mize the influence of heuristics, such as representa-
tiveness. Moreover, when both players choose the
risky option, both players receive all information si-
multaneously, which Hoffman et al. (2011) have
shown to produce average beliefs closest to the Bayes-
ian posterior. Furthermore, we employ a simple case
of Bayesian updating, a binomial sample, in which
the sample proportion asymptotically approaches the
uninformed posterior Bayesian estimate.

Accordingly, in the experiment, paired players si-
multaneously make dichotomous choices across two
stages: to play a lottery, with an unknown chance of
winning, or not. Players simultaneously choose be-
tween a guaranteed amount, predetermined to be one
of Si={$ 4, $ 8, $ 12}, and a lottery with an unknown
probability distribution. The lottery is framed as three
draws with replacement from an urn containing 100
balls, composed of an unknown proportion θ of red
balls and proportion 1� θ of blue balls, where
0≤ θ ≤ 1. Each red ball pays $5, and each blue ball
pays $0. Players are informed that θ is held constant
in both stages. If either of the players in a pair chooses
the lottery, both players observe the results. Hence,
while players have no information regarding θ in the
first stage, lottery results can be used to inform
second-stage decisions, if at least on paired player
chooses the lottery.

Each player participates in 20 rounds of two-stage
play, employing a within-subjects design (i.e., all sub-
jects are exposed to all treatments). In each round,
players are randomly assigned to a treatment with an
anonymous partner. Each treatment pair is assigned a
probability of success from a uniform distribution with
a mean of 0.5, in accordance with an uninformed
prior. Treatments, player pairing, and the underlying
probability of success are randomly assigned in each
round and remain fixed for that round.17 In each
round, treatments are drawn with replacement, while
player pairing and the underlying probability of suc-
cess are drawn without replacement. Players know
which treatment they have been assigned in the first
stage of every round.

In all sessions, the instructions are read aloud, as
well as presented on computer screens, to ensure com-
mon knowledge.18 During the instruction phase, pla-
yers must pass a short quiz on basic arithmetic and
statistics to reduce errors due to misunderstanding.19

In addition, risk preferences are elicited using a stan-
dard MPL, made popular by Holt and Laury (2002),
which consists of a menu of 10 binary choices bet-
ween their $5 show-up fee or a lottery with an increas-
ing (decreasing) chance of winning $10 ($0). Players
were paid on the basis of the outcome of one randomly
selected choice in the MPL task and one randomly
selected round of the bandit game. Experimental ses-
sions lasted approximately 90min, and participant
earnings averaged $18. A total of 52 players participa-
ted in the experiment over three sessions (18 in session
1, 20 in session 2, and 14 in session 3). Because each
player makes choices in each of two stages of 20 ro-
unds of play, there are 2080 total observed risky/safe
choices. The participant pool is composed of volunteer
students at the North American University.20

3.1. Hypotheses Regarding First-Stage Choices

Let the probability that a player in treatment {Si, Sj}
experiments with the risky option in the first stage be
given by

Pr ΔEVij > 0
� � ¼ βijDij þ ∈ ij; (4)

where ΔEVij denotes the sum of expected net gains
from choosing the risky option, Dij is an indicator



variable equal to one if the treatment is {Si,Sj}, and
zero otherwise; and ∈ij is an unobserved error term.

The βij parameters to be estimated correspond to
the conditional mean probabilities that each {Si, Sj}
player chooses the risky option in the first stage.21

The Nash equilibrium to the game in Figure 1 yields
the following first-stage predictions: β4,8 = β8,12 = 1
and β8,4 = β12,8 = 0. Hence, if players err, their errors
are necessarily one sided: those who should play the
risky (safe) strategy can only err by choosing the safe
(risky) option (Smith and Walker, 1993). Thus, the
error rates are ∈4,8 = 1� β4,8 and ∈8,12 = 1� β8,12 for
the {$ 4, $ 8} and {$ 8, $ 12} treatments, respec-
tively. Likewise, the error rates are ∈12,8 = β12,8 and
∈8,4 = β8,4 for the {$ 12, $ 8} and {$ 8, $ 4} treat-
ments, respectively.

Notice in Figure 1, players in the {$ 4, $ 8} and
the {$ 12, $ 8} treatments each have much more to
lose than players in the {$ 8, $ 4} and the
{$ 8, $ 12} treatments from making errors. That is,
ΔEV4,8>ΔEV8,12 and ΔEV12,8<ΔEV8,4. Hence,
those players with greater salience in their choices
should have smaller errors relative to the Nash pre-
dictions.22 Thus, while {$ 4, $ 8} and {$ 8, $ 12}
players are each expected to choose the risky option,
salience implies that ∈4,8<∈8,12. Similarly, while
{$ 12, $ 8} and {$ 8, $ 4} players are each expected
to choose the safe option, salience implies
∈12,8<∈8,4. In other words, β8,12< β4,8 (salience in
risky choices) and β12,8< β8,4 (salience in safe
choices). Combining the free-riding prediction,
β8,4> β8,12 , with the two salience predictions, then
implies the following ordering of predicted propor-
tions of risky choices:
As this gives a complete ordering of the expected
proportions of risky choices by treatment type, we
summarize it in the following hypothesis.

Hypothesis 1:
β4,8>β8,12>β8,4> β12,8: In the first stage, {$ 4, $ 8}
players should choose the risky option more often
than {$ 8, $ 12} players, who should choose the risky
option more than {$ 8, $ 4} players, who should
choose the risky option more often than {$ 12, $ 8}
players.

Note that rejection of the hypothesis is achieved by
evidence that contradicts any one of the inequalities.
This can be achieved by either under-experimentation
or over-experimentation. Under-experimentation occurs
when both players choose the safe choice in the first
stage, resulting in ∈8,12>∈8,4. On the other hand,
over-experimentation occurs when both players
choose the risky choice, resulting in ∈8,12<∈8,4.
We summarize these errors in the following hypothesis.

Hypothesis 2:

(a) 1� β8,12> β8,4: In the first stage, under-
experimentation results in a higher error rate for
{$ 8, $ 12} players relative to {$ 8, $ 4} players;
and

(b) 1� β8,12< β8,4: In the first stage, over-experimen-
tation results in a higher error rate for {$ 8, $ 4}
players relative to {$ 8, $ 12} players.

It is clear from inspection of Hypothesis 2 that (a)
and (b) cannot both hold; (a) implies β8,12 + β8,4> 1,
while (b) implies that β8,12 + β8,4< 1. Furthermore, it
is possible to reject both by a finding that β8,12
+ β8,4 = 1.

3.2. Hypotheses Regarding Second-Stage Choices

The Bayesian predictions are players with a safe
option of Si should choose the risky option in the
second stage whenever X ≥X Si

N ¼ Si 2þNð Þ
nR � 1 for

N∈ {n, 2n}.23 Allowing for player error, however,
implies the difference in expected utility between
the safe and risky options is increasing in the differ-
ence X � X Si

N . Hence, players’ second-stage behavior
should depend not only on the type of information
they observe, XX Si

N , but also on the strength of the
signal, X � X Si

N . Let ΔEV
2
it denote the expected net

gain from choosing the risky option in the second
stage to the Si player in round t. Hence, the



probability that a player chooses the risky option in
the second stage may be written as

Pr ΔEVit > 0ð Þ ¼ βAijDXi þ βBij X� XSi
N

� �þ ∈ i; (6)

where DXi is a vector of indicator variables which equal
to one ifX≥X Si

N for each treatment, and zero otherwise;24

X� XSi
N is a vector of the differences between the ob-

served and the critical number of successes, which is
equal to zero when no draws are observed; and ∈i is
the unobserved error. While strict Bayesian updating im-
plies βAij=1 and βBij=0 ∀ {Si,Sj}, allowing for decision
error implies the following hypothesis.

Hypothesis 3:
βAij> 0 ∀ {Si, Sj}: In the second stage, all players should
choose the risky option more often whenever the Bayes-
ian condition is satisfied, X ≥X Si

N ¼ Si 2þNð Þ
nR � 1 for

N∈ {n, 2n}.
and

Hypothesis 4:
βBij> 0 ∀ {Si, Sj}: In the second stage, the likelihood
of a player choosing the risky option is increasing in
the strength of the information signal, X � X Si

N .
3.3. Alternative Explanations

These theoretical predictions rely on the assumptions
that players are as follows: (i)risk neutral, (ii) ambigu-
ity neutral, and (iii) have uninformed prior beliefs. In
order to explore the validity of these assumptions,
first-stage and second-stage choices from the bandit
game (with and without information) are pooled with
those in the risk preference MPL (with and without
uncertainty). This within-subject variation permits
joint estimation of structural parameters of risk prefer-
ence and prior beliefs, using maximum likelihood
methods.25 Joint estimation of the parameters of the
prior belief distribution and the utility function avoids
potential misspecification bias.26

There is substantial evidence of heterogeneity in
the risk preference of individuals (Holt and Laury,
2002; Stott, 2006; Andersen et al., 2008). Hence, as-
sume player i’s preferences are given by the popular

CRRA utility functionUi πtð Þ ¼ π1�ri
t
1�ri

, where πt is the re-
turn from the Si player’s choice in stage t.27 The pa-
rameter ri measures the risk preference of the player,
where ri=0 implies risk neutrality; ri>0 implies risk
aversion; and ri<0 implies risk-loving preferences.

There is also evidence that preferences are not lin-
ear in probabilities (Camerer and Ho, 1994; Prelec,
1998; Stott, 2006; Tversky and Kahneman, 1992;
Wu and Gonzalez, 1996). Probability weighting is
also a popular way of modeling ambiguity aversion
(Einhorn and Hogarth, 1985; Schmeidler, 1989;
Viscusi, 1989).28 Therefore, the following probability
weighting function proposed by Tversky and Kahne-
man (1992) is incorporated to allow for more flexibil-
ity in preferences:29

ω ptð Þ ¼
pXt 1� ptð ÞN�X

� �γ

XN

X¼0
pXt 1� ptð ÞN�X

� �γn o1
γ
; (7)

where pt is the expected probability of success, given
any available information, and γ represents the curva-
ture parameter. For 0< γ< 1 (γ> 1) respondents
overweight (underweight) small probabilities and un-
derweight (overweight) large probabilities. Weighted
and objective probabilities are identical for γ=1.

Finally, stochastic decision error is introduced to
account for player’s ability to make mistakes. The
Fechner (1860/1966) model of stochastic choice as-
sumes each player maximizes their stochastic subjec-
tive expected utility, such that the probability the
risky option is chosen in stage t can be written as

Pr
Xn
X¼0

ω ptð ÞUi ytð Þf g þ EUMSit � Ui Sið Þ > ∈ i

" #
;

(8)

where yt=XR is the return to player Si from choosing
the risky option in stage t, ∈i is a stochastic noise pa-
rameter to account for decision error, and EUMSit is
the subjective expected utility of the message service
in stage t, which is

EUMSi1¼
Xn
X¼0

ω p1ð Þmax
Xn
X¼0

ω p2ð ÞUi y2ð Þ;Ui Sið Þ
" #( )

�max
Xn
X¼0

ω p1ð ÞUi y2ð Þ;Ui Sið Þ
" #

(9)

for treatments {$ 4, $ 8} and {$ 8, $ 12}, and

EUMSi1¼
X2n
X¼0

ω p1ð Þmax
Xn
X¼0

ω p2ð ÞUi y2ð Þ;Ui Sið Þ
" #( )

�
Xn
X¼0

ω p1ð Þmax
Xn
X¼0

ω p2ð ÞUi y2ð Þ;Ui Sið Þ
" #( )

(10)

for treatments {$ 8, $ 4} and {$ 12, $ 8}, and zero in
the second stage.30 Alternatively, the Luce (1959)



able 1. Regression Results for First Stage Choices

reatment Ordinary least squares Fixed-effects

$ 4, $ 8} 0.946*** 0.942***

(0.019) (0.022)
$ 8, $ 12} 0.467*** 0.469***

(0.055) (0.036)
$ 8, $ 4} 0.221*** 0.225***

(0.040) (0.026)
$ 12, $ 8} 0.021 0.019

(0.017) (0.025)
2 0.501 0.615

he data consists of a panel of 52 players over 20 decision rounds
040 observations). Robust standard errors are reported in paren-
eses. Statistical significance of t-tests that the estimated coefficient
zero is indicated by asterisks.

***Significant at 1% level.
model of stochastic choice assumes the probability
player i chooses the risky option in stage t is

Xn

X¼0
ω ptð ÞUi ytð Þ þ EUMSit

� �1
εi

Xn

X¼0
ω ptð ÞUi ytð Þ þ EUMSit

� �1
εi þ Ui Sið Þ1

εi

: (11)

Estimation of both models avoids making infer-
ences based on what Wilcox (2007) refers to as a ‘sto-
chastic identifying restriction’.31 The theoretical
predictions assume players are risk neutral, ri=0, do
not distort probabilities, γ=1, and have uninformed
prior beliefs such that α= β =1, implying p0 ¼ 1

2. We
explore the validity of these assumptions in the fol-
lowing analysis of the experimental results.

4. RESULTS

4.1. Analysis of First-Stage Decisions

Because players repeat the game over 20 rounds, it is
worthwhile to see how the proportion of risky choices
in each treatment varies over the course of the experi-
ment. Figure 2 shows the mean proportion of risky
choices in each round by treatment. The {$4, $ 8}
and {$12, $ 8} trends are quite stable across rounds
and are close to the predictions of one and zero, respec-
tively. Treatments {$8, $ 4} and {$8, $ 12}, however,
reflect much more volatility and are quite far from the
predictions of zero and one, respectively.32 Neverthe-
less, the vertical alignment is consistent with Hypothesis
1. The higher volatility in the {$8, $ 12} and {$8, $ 4}
treatments is consistent with the lower salience.
Figure 2. Proportion of risky choices in
To conduct a rigorous test of the predictions, we
estimate the parameters of the model in Equation
(4), controlling for player fixed-effects. Table 1 re-
ports the regression results for linear probability
models estimated via ordinary least squares.33

Model (1) simply includes a set of binary predictors
representing treatment effects. Thus, these estimates
represent the raw sample proportions for each treat-
ment. Model (2) estimates these treatment effects
while controlling for player-specific fixed-effects.
The results from the panel model are consistent
with the results from the pooled regression. Table 2
reports tests of the hypotheses stated in the previ-
ous section using the regression models reported
in Table 1. We focus on the versions of the Nash pre-
dictions which account for player error, as the strict
T

T

{

{

{

{

R

T
(1
th
is
first stage across rounds by treatment.



Table 2. Hypothesis Test Results for First-Stage
Choices

Hypothesis
Ordinary

least squares
Fixed-
effects

1a: HO :β4,8� β8,12 = 0 0.480*** 0.473***

(0.054) (0.051)
1b: HO :β8,12� β8,4 = 0 0.245*** 0.244***

(0.052) (0.049)
1c: HO :β8,4� β12,8 = 0 0.180*** 0.186***

(0.046) (0.064)
2: HO : 1� β8,12� β8,4 = 0 0.354*** 0.345***

(0.077) (0.084)

Columns (1) and (2) correspond to the models estimated in Table 2.
The table reports the observed difference in the estimated coeffi-
cients from Table 2. Standard errors are reported in parentheses
and statistical significance is indicated by asterisks.
***Significant at 1% level.
predictions are rejected in all cases. We summarize
the results of the hypothesis tests regarding first-stage
decisions subsequently.

Result 1. Both models support the full set of Nash
equilibrium predictions implied by Hypothesis 1:
{$ 4, $ 8} players choose the risky option more often
than {$ 8, $ 12} players; {$ 8, $ 12} players choose
the risky option more often than {$ 8, $ 4} players;
and {$ 8, $ 4} players choose the risky option more
often than {$ 12, $ 8} players.
Result 2. Both models support the under-
experimentation Hypothesis 2 that the {$ 8, $ 4} error
rate is smaller than the {$ 8, $ 12} error rate.

The results of the regression analysis are consis-
tent with the theoretical predictions, accounting for
decision error and the cost of such error. Random
decision error in a binary decision setting, such as
the bandit problem, will only lower (raise) the sam-
ple proportion away from one (zero). Smith and
Walker (1993) demonstrate the importance of
salience in the presence of random decision error.
For a given cost of making a decision, here captured
by the variance of the random error term, the
probability of making the optimal decision is in-
creasing in the difference in payoffs. Hence, because
treatments {$ 8, $ 4} and {$ 8, $ 12} are the least
salient (i.e., they have the lowest opportunity cost of
suboptimal behavior), these exhibit the largest error
rates and the most volatile behavior. Overall, error rates
in first-stage choices exhibit a bias toward under-
experimentation. Still, the results support the central
hypothesis that players experiment strategically; there
is a significant reduction in experimentation when
players anticipate they can free-ride on another
players’ information.
4.2. Analysis of Second-Stage Decisions

Analyzing how players respond to information in their
second-stage choices can provide some insight into the
validity of the assumption players employ Bayesian
updating in their valuation of information and may
help explain the under-experimentation observed in
the first stage of the game. Figure 3 shows the propor-
tion of players from each treatment that chooses the
Bayesian expected income maximizing choice in each
round. Although it does not appear that subjects im-
prove their performance relative to the Bayesian pre-
diction over the course of the experiment, there is
little room for improvement. Overall, subjects choose
the Bayesian expected income maximizing choice
82.9% of the time. This proportion varies across treat-
ments with subjects choosing the Bayesian prediction
89.1% of the time in the {$ 12, $ 8} treatment,
83.9% of the time in the {$ 4, $ 8} treatment, 81.3%
of the time in the {$ 8, $ 12} treatment, and 77.9%
of the time in the {$ 8, $ 4} treatment. These differ-
ences are consistent with differences in the expected
net benefits of choosing the Bayesian prediction.

Figure 4 depicts the proportion of players choosing
the risky option according to the number of successes
observed, for the cases where one or both players
chose to experiment with the risky option in the first
stage. In the left panel, exactly one player in a pair ex-
periments and in the right panel, both players in a pair
chose to experiment.34 Figure 4 reveals in each treat-
ment the proportion of players choosing the risky op-
tion is increasing in the number of observed
successes. Bayesian updating, however, generates
sharp predictions regarding responses to information.

Theoretically, a player should choose the risky op-
tion if a critical number of successes are observed,

X≥X $Si
N . In either panel of Figure 4, the largest increase

in the proportion of players choosing the risky option
occurs after observing the critical number of suc-
cesses, for each treatment. The largest increase in the
{$ 4, $ 8} treatment occurs after observing X $

34 ¼ 1,
an increase of 40% (left panel), and after observing
X $

64 ¼ 2, an increase of 66% (right panel). The largest
increase in the {$ 8, $ 4} and {$ 8, $ 12} treatments
occurs after observing X $

38 ¼ 2 when a single player
chose the risky option, increases of 42% and 32% (left
panel), respectively. The same is true for the
{$ 8, $ 4} treatment when both players chose the risky



Figure 3. Proportion of Bayesian expected income maximizing choices across rounds by treatment.

Figure 4. Proportion of risky choices by number of successes observed across treatments.
Table 3. Regression Results for Second-Stage
Choices

Ordinary least squares Fixed-effects

Bayes
{$ 4, $ 8} 0.451*** (0.039) 0.491*** (0.041)
{$ 8, $ 4} 0.358*** (0.055) 0.322*** (0.058)
{$ 8, $ 12} 0.253*** (0.075) 0.240*** (0.073)
{$ 12, $ 8} 0.081 (0.091) 0.030 (0.098)

Salience
{$ 8, $ 4} 0.028 (0.024) 0.017 (0.025)
{$ 8, $ 4} 0.090*** (0.020) 0.095*** (0.021)
{$ 8, $ 12} 0.156*** (0.029) 0.153*** (0.030)
{$ 12, $ 8} 0.105*** (0.017) 0.119*** (0.019)

Chose Risky 0.217***(0.048) 0.160*** (0.055)
Constant 0.212*** (0.034) 0.244*** (0.038)
R2 0.476 0.510

Columns (1) and (2) correspond to the models estimated in Table 2.
The table reports the observed difference in the estimated coeffi-
cients from Table 2. Standard errors are reported in parentheses
and statistical significance is indicated by asterisks.
***Significant at 1% level.
option; there is an increase of 48% (right panel) after
observing X $

68 ¼ 4. Finally, the only significant in-
crease in the {$ 12, $ 8} treatment occurs after observ-
ing X $

312 ¼ 3, an increase of 27% (left panel).35

From the aforementioned analysis, the proportion
of players choosing the risky option in the first stage
was highest in the {$ 4, $ 8} treatment, followed by
{$ 8, $ 12} and then {$ 8, $ 4}, and lowest in the
{$ 12, $ 8} treatment. Figure 4 reveals a similar
pattern in the second-stage choices, regardless of the
information signals. This represents persistence in
player behavior.

Table 3 reports the regression results for linear
probability model estimates of Equation (6) using
ordinary least squares. We estimate two models that
include three types of variables: (i) a set of indicator
variables which is equal to one when the critical num-

ber of successes is observed,X≥X $Si
N , representing pure



Bayesian predictions for each treatment; (ii) the value
X � X Si

N to capture the salience of the information sig-
nal by treatment;, and (iii) an indicator variable that is
one if a player chose the risky option in the first stage,
to account for the observed tendency to repeat that
decision. The second column reports panel regression
results that add player-specific fixed-effects to the
pooled regression reported in the first column.

The regression coefficients are interpreted as mar-
ginal effects given the linear specification.36 The first
set of coefficients is the average increases in the
proportion of players choosing the risky option when
the Bayesian criterion is satisfied. The regressions
indicate that the proportion of players choosing the
risky option when the Bayesian criterion is satisfied
increases significantly in all but the {$ 12, $ 8} treat-
ment. The results also suggest an increase in the
strength of the information signal further encourages
players to choose the predicted option, as the salience
effects are positive and significant for all cases but the
{$4, $ 8} treatment. Players also show a significant
propensity to stick with their first-stage choices. None-
theless, the results support the Bayesian prediction that
the probability of choosing the risky option in the sec-
ond stage increases after observing the critical number
of successes. We summarize the results of the hypothe-
ses tests regarding second stage decisions below.

Result 3. Both models support the Bayesian hypothe-
sis that the probability of choosing the risky option in
the second stage increases after observing the critical
number of successes. Three out of three βAij are statis-
tically greater than zero.
Result 4. Both models support the hypothesis that sa-
lience has an effect upon deviations from the
Bayesian-Nash predictions in the second stage. Three
out of four βBij are statistically greater than zero.

This suggests the under-experimentation observed in
first-stage decisions is not due to an inability to employ
Bayesian updating. Still, controlling for both Bayesian
updating and the salience of the information signal, we
observe a significant tendency to repeat first-stage
choices in the second stage. Hence, we explore whether
player preferences and/or prior beliefs can explain these
observed deviations from the theoretical predictions.
4.3. Estimation of Preference and Prior Belief
Parameters

The estimation results associated with Equations (8)
and (11) are shown in the columns 1–4 and columns
5–8 of Table 4, respectively. Columns 1 and 5 report
the estimation results from the risk preference elicita-
tion MPL. While neither models strongly rejects risk
neutrality, the estimated CRRA parameter changes
sign across models. Moreover, only the Luce error
specification suggests significant probability distor-
tion. The results from the MPL data suggest the esti-
mated parameter values are sensitive to the error
specification.37 The remaining columns report the re-
sults from the joint maximum likelihood estimation
of preference and prior belief parameters.

Columns 2 and 6 report the uncalibrated estimates
obtained from first-stage and second-stage choices
(with and without information) from the bandit game.
Columns 3 and 7 report the estimates calibrated by
the MPL data. These were obtained by combining the
MPL data with the bandit data (with and without
known probabilities) to obtain calibrated parameter
estimates of the prior belief distribution. Finally,
columns 4 and 8 also report calibrated parameter esti-
mates, allowing for differential weighting of known
and unknown probabilities.38 While the CRRA param-
eter is significantly different from risk neutrality in the
Luce error models, it is in the direction of risk seeking
preferences. Hence, it does not appear that risk aver-
sion is the culprit of the observed lack of experimenta-
tion in the first stage of the bandit game. Likewise,
there is not much evidence that probability weighting
played a large role either. In particular, the results in
columns 4 and 8 suggest only the known probabilities,
in the MPL, were substantially weighted.39 As with the
previous analysis, decision error seems to be a signifi-
cant component to the observed deviations from theo-
retical predictions, as the estimated error parameter is
always significantly different from unity.

Finally, the table reports the estimated parameters
of a beta distribution of prior beliefs. All of the Fech-
ner error models suggest beliefs were stronger than an
uninformed prior (i.e., α> 1 and β> 1). This is consis-
tent with the observed tendency to repeat first-stage
choices in the second stage of the bandit game. While
the Luce models also indicate beliefs were stronger
than an uninformed prior, only one parameter is signif-
icantly different from unity. Combining these parame-
ters provides an estimate of the prior belief of success,
p0 ¼ α

αþβ. The Fechner models imply priors were sig-
nificantly pessimistic, although the magnitude of this
pessimism is not terribly large. One the other hand,
the degree of pessimism, when significant, is larger
in the Luce models. However, the estimated prior is
much more sensitive to calibration and the restriction
of equal probability weighting in the Luce model.



Table 4. Joint Maximum Likelihood Estimation of Structural Parameters

Luce error Fechner error

(1) (2) (3) (4) (5) (6) (7) (8)

Parameter MPL
data

Bandit
data

Combined
restricted

Combined
unrestricted

MPL
data

Bandit
data

Combined
restricted

Combined
unrestricted

CRRA �0.451* �0.611*** �0.162 �0.296** 0.127 0.011 0.080 0.065
H0 : ρ = 0 (0.262) (0.178) (0.107) (0.117) (0.111) (0.110) (0.074) (0.072)
Weighting 0.481*** 0.538*** 0.892 0.776**

Known probability (0.075) (0.044) (0.293) (0.087)
0.905 0.953 1.051 1.050*

Unknown probability (0.124) (0.030) (0.035) (0.028)
0.672*** 0.942

H0 : γ = 1 (0.039) (0.059)
Error 0.207*** 0.322*** 0.237*** 0.248***

H0 : μ = 1 (0.052) (0.040) (0.028) (0.027)
2.203*** 2.365*** 2.156*** 2.129**

(0.078) (0.460) (0.341) (0.320)
Prior 1.006 1.194 1.351 1.919** 1.763** 1.990***

H0 : α = 1 (0.207) (0.272) (0.221) (0.360) (0.384) (0.378)
H0 : β = 1 1.738*** 1.138 1.964*** 2.246*** 2.028*** 2.272***

(0.263) (0.277) (0.280) (0.392) (0.401) (0.399)
p0 ¼ α

αþβ 0.366*** 0.512 0.408*** 0.461** 0.465** 0.467**

H0 : p0 = 0.5 (0.025) (0.026) (0.020) (0.018) (0.015) (0.016)
Observations 520 2080 2600 2600 520 2080 2600 2600
Log likelihood �240.060 �827.661 �1089.077 �1070.283 �237.390 �838.733 �1079.796 �1076.592

Robust standard errors are reported in parenthesis. All estimates were compared with the values reported in the first column, with signifi-
cance levels of the z-tests indicated by asterisks.
*Significant at 10%; **5%; ***and 1%.
Overall, neither risk preference nor probability
weighting appears to be the reason for the lack of experi-
mentation observed in first-stage choices of the bandit
game. When significantly different from neutrality, the
estimated CRRA parameter implies risk-seeking prefer-
ences. There is evidence of weighting known probabili-
ties, as the estimated parameter value is consistent with
those previously reported (Tversky and Kahneman,
1992; Camerer and Ho, 1994; Wu and Gonzalez, 1996
Prelec, 1998). Also consistent with previous findings
(Budescu et al., 2011), there is no evidence of significant
weighting of unknown probabilities. Rather, the lack of
experimentation in the bandit game appears to be mainly
the result of decision error and slightly pessimistic priors,
as these parameter estimates are significantly different
from the values assumed in the theoretical framework.
Pessimistic priors are not only consistent with the under–
experimentation observed in first stage decisions, but also
provide an explanation for the observed tendency to re-
peat first-stage choices in the second stage of the game.
5. DISCUSSION AND CONCLUSIONS

We began with the question: how does an information 
spillover in an armed bandit problem affect players’ 
decisions to experiment? Theoretically, the presence
of a spillover creates an incentive to free-ride on the
information generated by others. Still, it remains an
empirical question as to whether people actually en-
gage in such strategic experimentation. As such, this
paper reports the results of an experiment designed
to determine whether players free-ride in a bandit
problem with information spillover.

This is a fairly common decision setting, and an un-
derstanding of the information provided by players’ de-
cisions can inform policy debates concerning the public
reporting of success rates for entrepreneurship,
outsourcing, performance of new technology, and so
on. In such settings, some individuals have private in-
centives to take risks, but in doing so, their behavior
can inform others of the likelihood of a good (or bad)
payoff. While our results indicate that individuals
rationally free-ride on the information provided by
others in such settings, they experiment less than
predicted resulting in information shortages. Policies di-
rected toward encouraging risk taking—such as policies
encouraging the adoption of new technology—could
mitigate the effects of individual aversion to experimen-
tation. Moreover, policies that encourage public
reporting of information in such settings could improve
the efficiency of productive risk-taking activities.



Analysis of second-stage decisions suggests indi-
viduals would be responsive to such policies. Overall,
subjects choose the Bayesian expected income maxi-
mizing choice 82.9% of the time. Hence, the lack of
experimentation in the first stage of the bandit game
does not appear to be due to how players process in-
formation. Still, the results indicate two sources of po-
tential bias to Bayesian updating: (i) the strength of the
information signal and (ii) previous choices.

To determine the likely reason for the observed ten-
dency to experiment less than predicted, we explore
the validity of the assumptions made to generate theo-
retical predictions in the analysis of the results, as
Bayesian predictions are largely supported by second
stage choices. We also find evidence that the strength
of the information signal matters, however, which is
consistent with behavioral models of decision error.
In addition, we observe a significant tendency to re-
peat previous choices regardless of the information
signal. Still, controlling for these factors, we observe
a significant increase in the propensity to choose the
risky option in the second stage of the bandit game
when the number of successes observed is sufficient
to make the expected net benefits of doing so profit-
able, as predicted by Bayesian updating.

Finally, we explore the extent to which risk prefer-
ences, probability weighting (a popular method of
modeling ambiguity aversion), and/or pessimistic priors
(another approach to modeling ambiguity aversion) can
explain why players experimented less than pre-
dicted. We jointly estimate parameters of risk pref-
erence, probability weighting, and prior belief
parameters using choices from a standard risk pref-
erence elicitation MPL in combination with the de-
cisions in the bandit game. When significantly
different from neutrality, the estimated CRRA pa-
rameter implies risk-seeking preferences. There is
evidence of weighting known probabilities; how-
ever, we find no evidence of significant weighting
of unknown probabilities. Estimated prior beliefs
were somewhat pessimistic and stronger than an
uninformed prior. Hence, the lack of experimenta-
tion in the bandit game appears to be mainly the re-
sult of decision error and slightly pessimistic priors.

Nonetheless, only one player experiments with
the bandit, as predicted, about two-thirds of the
time. Moreover, it is the predicted player at least
96% of the time. Thus, although players experiment
with the bandit less than predicted, we still find
evidence that players behave strategically, by free-
riding when possible in the presence of an informa-
tion spillover.
APPENDIX

EXPECTED PAYOFF CALCULATIONS

The following appendix provides detailed calculations
of players’ first-stage expected payoffs. We begin with
the calculations of the expected values of the prior and
posterior distributions of beliefs.
Beliefs

Given an uniformed prior, such that p1 ¼ 1
2 , the

probabilities of observing X successes out of N=3
draws are

f 3 0ð Þ ¼ 1
8
; f 3 1ð Þ ¼ 3

8
; f 3 2ð Þ ¼ 3

8
; and f 3 3ð Þ ¼ 1

8
:

Likewise, the probabilities of observing X suc-
cesses out of N=6 draws are

f 6 0ð Þ ¼ 1
64

; f 6 1ð Þ ¼ 3
32
; f 6 2ð Þ ¼ 15

64
;

f 6 3ð Þ ¼ 5
16

; f 6 4ð Þ ¼ 15
64
; f 6 5ð Þ ¼ 3

32
; and

f 6 6ð Þ ¼ 1
64

:

When a player observes X successes out of N=3
draws, their posterior belief will be

p2 ¼
1
5
for X ¼ 0; p2 ¼

2
5
for X ¼ 1;

p2 ¼
3
5
for X ¼ 2; and p2 ¼

4
5

for X ¼ 3 :

Likewise, when a player observes X successes out
of N=6 draws, their posterior belief will be

p2 ¼
1
8
for X ¼ 0; p2 ¼

2
8
for X ¼ 1;

p2 ¼
3
8
for X ¼ 2; p2 ¼

4
8
for X ¼ 3;

p2 ¼
5
8
for X ¼ 4; p2 ¼

6
8
for X ¼ 5; and

p2 ¼
7
8
for X ¼ 6 :

We now turn our attention to the expected payoff
calculations for each treatment. All calculations as-
sume players choose the Bayesian expected value
maximizing choice in the second stage.



{$ 4, $ 8} Treatment

Suppose that player SM=$8 has chosen the safe op-
tion. If player SL=$4 chooses the safe option in the
first stage, they can expect to earn

$4þ 1
8
$0þ 3

8
$5þ 3

8
$10þ 1

8
$15

¼ $4þ 1
2
$15 ¼ $11:50:

Otherwise, if they choose the risky option in the
first stage, they can expect to earn

1
8ð$0þ max½$4; 15 15�Þ þ 3

8ð$5þ max½$4; 25 $15�Þ
þ3
8 $10þ max $4; 35$15

h i� �

þ1
8 $15þ max $4; 4515�Þ ¼ $15:13:

h�

Suppose that player SM=$8 has chosen the risky
option. If player SL=$4 chooses the safe option in
the first stage, they can expect to earn

$4þ 1
8
max $4;

1
5
$15

� �
þ 3
8
max $4;

2
5
$15

� �

þ 3
8
max $4;

3
5
$15

� �
þ 1
8
max $4;

4
5
$15

� �

¼ $11:63:

Otherwise, if they choose the risky option in the
first stage, they can expect to earn

1
8
$ 0þ 3

8
$5þ 3

8
$10þ 1

8
$15þ 1

64
max $4;

1
8
$15

� �

þ 3
32

max $4;
2
8
$15

� �
þ 15
64

max $4;
3
8
$15

� �

þ 5
16

max $4;
4
8
$15

� �
þ 15
64

max $4;
5
8
$15

� �

þ 3
32

max $4;
6
8
$15

� �
þ 1
64

max $4;
7
8
$15

� �

¼ $15:13:
{$ 8, $ 4} and {$ 8, $ 12} Treatments

Suppose that player SL=$4 or SH=$12 has chosen
the safe option. If player SM=$8 chooses the safe op-
tion in the first stage, they can expect to earn,

$8þ $8 ¼ $16:00:

Otherwise, if they choose the risky option in the
first stage, they can expect to earn

1
8

$0þ max $8;
1
5
$15

� �� 	

þ 3
8

$5þ max $8;
2
5
$15

� �� 	

þ 3
8

$10þ max $8;
3
5
$15

� �� 	

þ 1
8

$15þ max $8;
4
5
$15

� �� 	
¼ $16:38

Suppose that player SL=$4 or SH=$12 has chosen
the risky option. If player SM=$8 chooses the safe op-
tion in the first stage, they can expect to earn

$8þ 1
8
max $8;

1
5
$15

� �
þ 3
8
max $8;

2
5
$15

� �

þ 3
8
max $8;

3
5
$15

� �
þ 1
8
max $8;

4
5
$15

� �

¼ $16:88:

Otherwise, if they choose the risky option in the
first stage, they can expect to earn,

1
8
$0þ 3

8
$5þ 3

8
$10þ 1

8
$15þ 1

64
max $8;

1
8
$15

� �

þ 3
32

max $8;
2
8
$15

� �
þ 15
64

max $8;
3
8
$15

� �

þ 5
16

max $8;
4
8
$15

� �
þ 15
64

max $8;
5
8
$15

� �

þ 3
32

max $8;
6
8
$15

� �
þ 1
64

max $8;
7
8
$15

� �

¼ $16:21:

{$ 12, $ 8} Treatment

Finally, suppose that player SM=$8 has chosen the
safe option. If player SH=$12 chooses the safe option
in the first stage, they can expect to earn

$12þ $12 ¼ $24:00:



Otherwise, if they choose the risky option in the
first stage, they can expect to earn,

1
8

$0þ max $12;
1
5
$15

� �� 	

þ 3
8

$5þ max $12;
2
5
$15

� �� 	

þ 3
8

$10þ max $12;
3
5
$15

� �� 	

þ 1
8

$15þ max $12;
4
5
$15

� �� 	
¼ $19:50:

Suppose that player SM=$8 has chosen the risky
option. If player SH=$12 chooses the safe option in
the first stage, they can expect to earn

$ 12þ 1
8
max $12;

1
5
$15

� �
þ 3
8
max $12;

2
5
$15

� �

þ3
8
max $12;

3
5
$15

� �
þ 1
8
max $12;

4
5
$15

� �
¼ $24:00:

Otherwise, if they choose the risky option in the
first stage, they can expect to earn

1
8
$0þ 3

8
$5þ 3

8
$10þ 1

8
$15þ 1

64
max $12;

1
8
$15

� �

þ 3
32

max $12;
2
8
$15

� �
þ 15
64

max $12;
3
8
$15

� �

þ 5
16

max $12;
4
8
$15

� �
þ 15
64

max $`1;
5
8
$15

� �

þ 3
32

max $12;
6
8
$15

� �
þ 1
64

max $12;
7
8
$15

� �
¼ $19:52:

NOTES

1. Pure information spillovers are fundamentally different
from the literature on information cascades and herding.
The latter assumes only players’ actions are observable,
while the former assumes outcomes are observable.

2. Because it is a dominant strategy for players to choose
the high safe option; this situation is strategically equiv-
alent to the absence of spillover for players with a mid-
dle safe option, because they should not expect their
partner to provide any information.

3. There is considerable evidence that suggests the individ-
uals undervalue information (McKelvey and Page,
1990; Meyer and Shi, 1995; Banks et al., 1997; Gans
et al., 2007; Anderson, 2012). Although Kraemer
et al. (2006) report experimental results that subjects
purchase too much information (appearing to overvalue
it), Anderson (2012) demonstrates this is consistent with
ambiguity aversion.
4. Hey and Panaccione (2011) refer to this as resolute
behavior.

5. Hao and Houser (2012), Holt and Smith (2009), and
Karni (2009) use Becker et al., (1964) mechanisms that
do not require risk neutrality.

6. Andersen et al., (2010) suggest this approach, similar to
the technique to jointly estimate risk and time prefer-
ences used by Andersen et al., (2008).

7. For simplicity, the theoretical framework used to estab-
lish testable hypotheses assumes risk and ambiguous
neutral preferences. In the next section, we develop a
structural equation that allows for more flexibility in
preferences to account for risk and ambiguity aversion
(seeking). The following section reports the estimation
results regarding the validity of these assumptions.

8. Viscusi and O’Connor (1984) advocate the use of a beta
distribution for Bernoulli processes.

9. We explore the validity of this assumption in the data
analysis. Viscusi (1989) proposes weighting parameters
in the updating function to account for ambiguity aversion.

10. Viscusi (1989) proposes weighting parameters in this
updating function to account for ambiguity aversion.

11. Snow (2010) shows that the value of information that
resolves uncertainty is positive and increasing in
ambiguity aversion. Paradoxically, Anderson (2012)
demonstrates that ambiguity aversion also lowers
the value of information that reduces uncertainty.
Anderson (2012) conducts an experimental test of
these hypotheses and finds evidence supporting both
predictions.

12. Pairing SM players complicates the game by introducing
a coordination problem.

13. Hence, 25% of players are SL types, 50% are SM types,
and 25% are SH types.

14. Detailed calculations of these expected payoffs are
provided in the appendix.

15. Notice the cost of decision error for SH and SL players is
much higher (approximately 23% and 40%, respec-
tively) relative to SM players (2.5–3.7%). The small
difference in expected payoffs increases the likelihood
of rejecting the Nash equilibrium predictions.

16. See Tversky and Kahneman (1971), Kahneman and
Tversky (1972), Kahneman and Tversky (1973),
Tversky and Kahneman (1973), Grether (1980), Grether
(1992), El-Gamal and Grether (1995), Holt and Smith
(2009), and Nyarko and Sopher (2006) for a discussion
of these results.

17. Random treatment assignment under a within-subjects
design allows the data analysis to control for potential
subject-specific fixed-effects, such as risk preference.

18. Screen images and instructions are available from the
authors.

19. Players could not proceed until they answered all
questions correctly.

20. Participants are recruited by email via the lab’s Online
Recruitment System for Experimental Economics
(ORSEE) (Greiner, 2004). The experiment is
programmed and conducted with the software Z-Tree
(Fischbacher, 2007).

21. The analysis controls for any subject-specific fixed-
effects. The within-subjects design implies player
fixed-effects are uncorrelated with the treatments effects.



22. The low cost of error in the {$8, $4} and {$8, $12}
treatments is by virtue of the bandit problem itself. This
only reduces the chances that behavior supports the
Nash predictions.

23. Note Si = $ 4 players should also choose the risky option
in the second stage when N= 0.

24. The dummy variable for the {$ 4, $ 8} treatment also
takes a value of one when N = 0 because the expected
net benefits of the risky option are positive.

25. A detailed discussion of the estimation technique can be
found in Harrison (2007).

26. For example, Andersen et al., (2008) demonstrate joint
estimation of risk and time preference parameters
removes the upward bias in estimated discount rates that
assume risk neutrality.

27. The choice of a CRRA utility function is based on its
popularity and its ability to explain behavior, ‘under
one specific payoff scale, constant relative risk aversion
can provide an excellent fit for the data patterns’ ( Holt
and Laury, 2002, p1652).

28. Camerer & Weber (1992) provide an excellent overview
of the various approaches to modeling ambiguity aversion.

29. Budescu et al. (2011) investigate the effect of probabil-
ity weighting in the estimation of prior beliefs. They do
not find substantial evidence of bias in elicited beliefs
due to probability distortion.

30. This assumes the other player chooses optimally.
31. Wilcox (2007), Harrison (2007), and Andersen et al.,

(2008) demonstrate that the main finding of Holt and
Laury (2002), increasing relative risk aversion, is con-
tingent on their choice of the Luce (1959) model with
CRRA because the choice probability is invariant to
the scale of payoffs.

32. There appears to be an ‘end-game’ effect in these two
series.

33. We also verified that probit and logit specifications yield
qualitatively similar results.

34. For 274 observations, N= 0; for 644 observations,
N= 3; and for 122 observations, N= 6.

35. Risk neutrality predicts indifference at X ¼ X $
312. We

never observe X≥X $
612 ¼ 6.

36. We verified that probit specifications yield qualitatively
similar results.

37. The difference in the estimated decision error parame-
ters is due to the alternative specifications of the error
structure in Equations (8) and (11). In either case, how-
ever, no error implies a parameter value of unity.

38. Tversky and Kahneman (1992) suggest the weighting
function be allowed to differ across these domains.

39. The results in column 8 are consistent with the case
made by Wakker (2001) for an (inverse) S-shaped
weighting function for unknown (known) probabilities.
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